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Finite-Dimensional Approximation of Constrained 
Tikhonov-Regularized Solutions of Ill-Posed 

Linear Operator Equations 

By A. Neubauer* 

Abstract. In this paper we derive conditions under which the finite-dimensional constrained 
Tikhonov-regularized solutions x, c of an ill-posed linear operator equation Tx = y (i.e., 
Xac is the minimizing element of the functional IITx - y112 + alIx112, a > 0 in the closed 
convex set C,?, which is a finite-dimensional approximation of a closed convex set C) converge 
to the best approximate solution of the equation in C. Moreover, we develop an estimate for 
the approximation error, which is optimal for certain sets C and C,?. We present numerical 
results that verify the theoretical results. 

1. Introduction. In many problems arising in practice one has to solve linear 
operator equations 

Tx = y, 

where x and y are elements in real Hilbert spaces X and Y, respectively, and T is a 
linear bounded operator from X into Y. By a solution of the equation Tx = y we 
always mean the best-approximate solution Tty, where Tt is the Moore-Penrose 
inverse of T. Unfortunately, Tt is not bounded in general. A prominent example for 
the equation Tx = y is a Fredholm integral equation of the first kind, 

f k(t, s )x(s) ds = y(t), t e [0, 11, 

x, y E L2[0, 1], k E L2([0,1]2). Here, Tt is bounded if and only if k is a 
degenerate kernel. Therefore, one has to regularize the equation Tx = y. A well- 
known and effective regularization method is Tikhonov-regularization, where the 
functional IITx - y112 + alIx112, a > 0, is minimized in X (cf., e.g., [4]). Often, one is 
not interested in the solution Tty, but in the best-approximate solution on a certain 
set C, which, in the following, we assume to be closed and convex. It is thus 
reasonable to require that the regularized solutions should have the same properties 
as the unknown exact solution, e.g., it should be an element of C. Therefore, we 
regularize the problem 

Tx =y A x E C 
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566 A. NEUBAUER 

by minimizing the Tikhonov functional IITx - yll2 + alIxII2, a > 0, on C. We call 
the solution x. cof this minimum problem the "constrained Tikhonov-regularized 
solution." Results about convergence rates for these solutions xac have been 

developed in [9] (cf. also [10]). For stability and convergence results see [7], [9] and 

[10]. Some of these results are summarized in the next section. 
For numerical computation one approximates the Hilbert space X by finite-di- 

mensional subspaces X,. In Section 3 we are concerned with the influence of the 

approximation of X and C on the convergence and the convergence rates of 

constrained Tikhonov-regularized solutions. In contrast to the optimal estimate of 

the approximation error in the unconstrained case (cf., e.g., [4]), estimates for 

IIx,c - xc I, where xc is the constrained Tikhonov-regularized solution in C, 
(c X"), in general contain terms for which only the square root of the best-possible 

rate of convergence of elements in C, to xa c can be guaranteed (cf. [11]). We 

develop an estimate which implies, at least in the case that C is a ball and 

Cn = C rn X, the optimal convergence rate (see Theorem 3.9 and Corollary 3.10). 
In the last section we present numerical examples for integral equations of the 

first kind. For the sets C we have chosen the nonnegative functions on the one hand, 

and balls on the other hand. Xn is the space of linear splines on a uniform grid of 

(n + 1) points in [0,11. The tables show that the convergence rates obtained confirm 

the theoretical results. 

2. Constrained Tikhonov Regularization. Throughout this paper, let X and Y be 

real Hilbert spaces; T: X -> Y a bounded linear operator; the set of all bounded 

linear operators on X into Y will be denoted by L(X, Y). The inner products and 

norms in X and Y, though in general different, will both be denoted by (,.) and 

1, respectively. We consider the problem of solving 

(2.1) Tx=y and xeC 

with y E Y and 0 # C (c X) a convex closed set. We define now what we mean 

by the "solution" of (2.1). 
Definition 2.1. x0,c E C is called the "C-best approximate solution" of (2.1) if 

ITXo,cY y inf{IITX-YII XE C) 

and 

IIxo,cI= inf{ IxII EX C and IITx -YII = IITxo,c-YII} 
Thus, a C-best approximate solution minimizes the norm of the residual on C and 

has minimal norm among all minimizers. 

PROPOSITION 2.2. Let R be the metric projector of Y onto T(C). 
(a) Ry is defined as the unique element in T( C), for which 

(2.2) (Ry-y, u-Ry) >0 for all u E T(C) 

holds. 
(b) A C-best approximate solution exists if and only if Ry E T(C); it is then unique. 

(c) Let Ry E T(C) and let xo,c be defined by Definition 2.1. Then 

(2.3) Txo,c= Ry 
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and 

IIX,cI= inf{IIxII Ix E Cand Tx = Ry}. 

Proof. The proof follows from [9, Proposition 2.2, (2.3) and (2.4)] and Definition 
2.1. El 

We regularize the problem of solving (2.1) by solving the minimization problem 

(2.4) min{IITx-Y112 + aIIxII2Ix EC, a > 0. 

One can show that the problem (2.4) has a unique solution x, c for all a > 0 and 
that 

(2.5) IITXa, - Qy + aIIxaCII = inf{ IITX-QYI2 + aIIXII2IX E C 

where Q is the orthogonal projector onto R(T) (cf. [9, Theorem 2.3]). We call xa c 
the "constrained Tikhonov-regularized solution" of (2.1). x. can also be char- 
acterized as the unique element in C such that the variational inequality 

(2.6) (T*Tx.,C + axa,C- T*y, h - xc) > 0 for all h e C 

holds (cf. [9, (2.7)]). 
In the following two theorems we show that x, c converges to the C-best 

approximate solution x0 c of (2.1), if Ry E T(C), and that xa c depends continu- 
ously on the data y for all a > 0. Therefore, the problem of solving (2.4) is well 
posed. 

THEOREM 2.3. Let T e L(X, Y), y E Y. 
(a) The constrained Tikhonov-regularized solutions x ac converge to an element in C 

fora -3 0 if and only if Ry E T(C). 
(b) Ry e T(C) implies that lima .oxa c = xo ,c 

Proof. See [9, Theorem 2.4]. O 

THEOREM 2.4. Let a > 0 and let xa c and xa c be the constrained Tikhonov-regu- 
larized solutions for the right-hand side y and y of Eq. (2.1), respectively, and let Q be 
the orthogonal projector onto R(T). Then IIx - a1"2lIQ(y-Y)11 and 
IIT(xa,c - xa,C)II < IIQ(Y - )l. 

Proof. See [9, Theorem 2.5]. O 
If one knows more about x0oc than its existence, one can also guarantee 

convergence rates for constrained Tikhonov-regularized solutions. 

THEOREM 2.5. Let Ry e T(C). 
(a) If xo,c E R(PcT*), then llXa,C - x0,cI = 0(a1"2) and IIT(xa,c - Xo,C)II = 

0(a). If in addition Qy = Ry, we even obtain llxa,c - x0,cIJ = o(a1/2). 
(b) Let Qy = Ry. Then JIT(xa,, - x0,)II =0(a) implies that xo0c E R(PcT*). 

(Pc denotes the metric projector of X onto C.) 

Proof. See [9, Theorem 4.2]. O 
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THEOREM 2.6. Let Ry E T(C) and let aC be twice continuously Fr&het-differentia- 
ble in a neighborhood of xOc; i.e., there exist E > 0, c > 0 and a functional F: 

U/(xo,c) -- R such that aC n Uf(xolC) = {x C U,(xo,C) I F(x) = c) and F is twice 
continuously Fr&het-differentiable. Moreover, let F"(xoc) be positive definite (i.e., 
-y > 0 exists such that F"(xoc)(z, z)> r1zy 112 for all z E X) and let one of the 
following two conditions be fulfilled: 

(i) Ry # Qy, x0 c C N(T) ' and Qy c R(T); 
(ii) Ry = Qy, xo,c E R(PcT*) and xo,c = T*, 

where iu is the element of minimal norm in U:= {u E R(T) I PcT*u = xOc). Let P 
be the orthogonalprojector onto L:= { h E X I (fo, h) = 0), where 

T*(Ry - Qy) in the case (i) 
J |T*( Ry - Qy) 

8 - T*iT u in the case (ii). 
- T*u11 

Then Pxo0c E R(PT*TP) implies that llxa,c - xOcjj = 0(a). 

Proof. The proof follows from [9, Lemma 5.12 and Theorem 5.13]. 0 
For a more general version of Theorem 2.6 see [9, Theorem 5.13]. 
We now assume that the exact right-hand side y of Eq. (2.1) is unknown and that 

only perturbed data y are available. We assume that we have the information 
IIQ(y - y8)Il < 8. Let xa c be the constrained Tikhonov-regularized solution of (2.1) 
with y replaced by y8. Then we obtain the following result. 

THEOREM 2.7. Let Ry E T(C) andy8 E Ysuch that IIQ(y - Ya)I < . 
(a) If a(3) is such that lima >0a(8) = O and lima p082/a(8) = O, then 

lim8.x 8C= lim , o xa(&),c = xO,c- 

(b) xOc E R(PcT*) and a(8) 8 imply that jjx(86) -xOC,j = O(81/2). 
(c) Under the assumptions of Theorem 2.6, Pxo c E R(PT*TP) (P as in Theorem 

2.6) and a(8) -32/3 imply that jjx(86),c - xOC,II = 0(82/3). 

Proof. The proof follows from Theorems 2.3-2.6. El 
For more results on constrained Tikhonov-regularized solutions, and detailed 

proofs, see [9] (cf. also [10]). 

3. Finite-Dimensional Approximation of C-Best Approximate Solutions. For 
numerical computation one has to approximate the infinite-dimensional real Hilbert 
space X by a sequence of finite-dimensional subspaces. In the unconstrained case, 
algorithms for the finite-dimensional approximation of Tty have been developed, 
e.g., in [2], [4] and [6]. 

We approximate X by finite-dimensional subspaces Xn (n c N) such that X1 c 
X2c ..and U nE N Xn = X. Moreover, we approximate the closed convex set C 
by closed convex sets Cn C Xn (e.g., Cn = C rn X") and compute the constrained 
Tikhonov-regularized solutions xa c in C,,. Now we look for conditions under which 

xa,c converges to xOc for a -* 0 and n xo. 
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Following [8], we define 
Definition 3.1. Let Cn be a sequence of subsets in X. 

(a) s- lim Cn= {x E XI there exist a sequence { xn } and N E N 

such that xn E Cn for all n > Nand xn -* x for n -> ox. 

w- lim Cn= { x E X I there exist a sequence { x, }, a strictly 

monotonically increasing sequence { n k } and K e N 

such that xk e Cnk for all k > K and xk - x for k - oo}. 

(b) lim Cn = C if and only if s- lim Cn = w- lim Cn = C. 
n - oo 

THEOREM 3.2. Let Ry e T(C) and let Cn be a sequence of closed and convex subsets 
in X such that limn , Cn = C. Moreover, let { Xn 4 be a sequence in X such that 
Xne Cn for all n e N and limn , . Xn = xo0c, and let { ta 4 be a sequence such that 

an 410 for n -x o. If one of the following two conditions: 

(i) Ry = Qy and limn a-IIT(xn - xo,c) 11 2 = 0; 
(ii) Ry # Qy, Cn c C for all n e N and limn a-IIT(xn.- XOC)II = 0 

is fulfilled, then limn - oo Xan,Cn 
= X0,C, 

Proof. First we show that 

(3.1) lim TXan,Cn = Ry 
n - oo 

and 

(3.2) lim sup || xa ncn < 11 X0,C Il. 
n - oo 

Let (i) be fulfilled. Then (2.5) implies that 

TlEXa 
- 

c 112 + Q 
2 

< X 2 - QYII2 + anlXn 1, 11 Txn,Cnn+IXnlx,CnII ~IITx~- +aIxI2 

which together with (2.3) and Ry = Qy implies that 

0 < lim IITXa c -Qy12 < lim Txn- QYII 2+ anilXn 112) 0 

and 

limsup IIXa 1 | - xoc)j2 + ixnii2) =XnxoCcIlma 

Now let (ii) be fulfilled. Since Cn c C, (2.2) (with u = Txan cn) implies that 

TXanC - TxanCn -y + 2(TXan,Cn RY,YRY) IIRY-Y2 

12 2I 
< || Txancn -Y || _| RY-Y112 

and hence 

TXan,C - Ry 2 -y_ 1122 ||Ta c -y| TXa c -Y IIRy + anIIxa c,II 

< || Txn -y|| -I RY -y112 + anIl Xn 11 
which together with (2.3) implies that 

0 < lim TTxc -nRy|| < lim (IITXn- Y -IITXO,C y112 + anilIXni2) = 0 
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and 

lrn sup XI anXCn j lim (a '(IITx -Y112-IIXO,C-Y_2) + IIX 112) 

lim (a-, 1IT(xn - c) l(IITXn - YIj + IITXOC - YII) + IIXn 11) = IXOCII2. 
n oo 

Now let {ak } be an arbitrary subsequence of { an). Then (3.2) implies that there 
exist a subsequence of { ak } (again denoted by { k }) and an element u E X such 
that x ak,Ck -k u for k -4 00. Together with lim n Cn = C, (3.1) and (3.2), we obtain 
that u e C, Tu Ry and 

|| ul|| = lim I (X-k,Ck' U) |< l| U l lim sup llXak,Ck || || O,cl| 

which implies that ilull < lixo0c,l. Proposition 2.2 now implies that u = xoc. There- 
fore, we have shown 

(3.3) Xan,Cn o c 

Again, (3.2) implies that 

xcll - lim |(XOcXanCn)I <IlX,c II liminf lXancIn || 

< ||1x0,Jl|| * lim sup ||lXan ,Cn || < 11 XO,C 11 2, 
n -0oo 

and hence lim n - ooIIXan,Cnl = l1xo0clI. Together with (3.3), this implies the assertion. 

Theorem 3.2 is a qualitative convergence result. To obtain results about conver- 
gence rates, we develop an estimate for IIx,a,C - Xa C 11, where we follow [11]. For the 
proof of the next theorem we need the following lemma. 

LEMMA 3.3. Let a, b, c > 0. Then a2 < a * b + C2 implies a < b + c. 

Proof. Since (ab/2c + c)2 = a2b2/4c2 + ab + C2, the inequality a2 < ab + C2 

implies a2(1 + b2/4c2) < (ab/2c + C)2, and hence a* /1 + b2/4c2 < ab/2c + c. 
This implies that a(4 2 + 4c2 - b) < 2c2, and hence 

2c2 Vb2+ 4c2 + b - 1 

rb2+ 4c2 - b ib2+ 4c2 +b 2 + 

< b2 + 4bc + 4c2 + b) = b + c. O 

THEOREM 3.4. Let C and Cn be closed and convex. For a > 0 let ga be defined by 
ga := T*Txa,c + axaC c-T *y. Then 

XaC - Xa,C II < a-1/211 T(xa,c-h nh) jj + llX4c,c -h nh,l 

+a1 / hjg, (2|xo,c-hn 1 + IIXa,Cn -hi 1) 

forallh E Candhn e Cn 
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Proof. For a > 0 we can define the following inner product on X (cf. [4]) 

(3.4) [u, v]a:= (Tu,Tv) + a(u,v) and IuIa:= [u,ulj/2, u,v e X. 

Then (2.6) implies that 

(3.5) [Xa,C h-Xa.C] >I (T*y, h - xac) for all h e C 

and 

(3.6) [Xa,C hn-Xan,Cn] a > (T *y, hn-Xan,Cn) for all hn e Cn 

hold. Summing up (3.5) and (3.6) we obtain for all h e C and h n e Cn 

x 
2 

< [Xa,c, ]a + [Xa,h n]a a- T*y, h- Xac + h -Xa) Ia,CIa +I1XaCI la + X(TC*vh. hn- a,n 

and hence with Ix ac -Xa,C Ia = IXa,Ca + IXa2 Ca - 2[Xa,, Xa,cIa and (3.4) that 

Xa,c - Xa,CnI a < [Xa,c- h na] aX 
a 

Xa'C Xa,Cn < a,Cn]+ a Ia,Cn hn - Xa,C] 

-(T*y, hxaC + hn - Xa,Cn) 

= [Xa,C -Xa,Cn'Xa,C -hn]a + [xa,c, h- Xa,Cn + hn- X a,Ca 

-(T*y, hXaC + hn - Xa,C) 

= [Xa,C- Xa,Cn Xa,C -hn] a + (ga h - Xa,Cn + hn - Xa,c) 

<xa,c-XaCnIIXac -hnla + 1h - Xa,Cn + hn -Xa,Cl 

Together with Lemma 3.3, we obtain 

IXaaC - XaCIl < Ix,chnla +hn gaIl ' 1 h - 
Xa,Cn + hn - Xa,CII 

Now (3.4) and IIh - X a,Cn + hn- Xa,CII < Ilh - Xa,Cn + llhn - Xa,CII imply 

~1t/ *IXa,C- Xa,C 1 IXa C-Xa,CnI a < (IIT(Xa,C-hn)jl + alIXac-hnII2) 

+ II gaI12(IIxa,c - Ihn + XaC -h )1/2. 

Together with (a2 + b2)1/2 < (a2 + 21abl + b2)1/2 = lal + Ibl, we obtain 

IIXa,C - Xa,Cn I < a-1/211 T(xa,c - h n) 11 

+II xac- h~I + 1/211 g. 11l/2(iix - hnll +IIXa - hg)".1 2 
nllh 1 + aXl2l 11/(la'C-h +|a,Cn-h| 

Remark 3.5. (a) If Cn c C, then we can choose h = Xa C in the estimate of 
Theorem 3.4. 

(b) If C = X and Cn = Xn, where Xn is a linear finite-dimensional subspace of X 
(unconstrained case), then g, = 0 and hn = PnXa,c = Pn x a' where Pn is the orthogo- 
nal projector onto Xn, imply the estimate 

IIXaC - Xa,C I IXa n || < a 1/211 T(I - Pn) 
Xa,c 

II + j(I - Pn)XaCII 

which is the same estimate as in [4]. 
(c) Let 

a:= hn GE Cnl((T*T?+ aI)(x,Cn -X,Cr), h -X Cnr) 
>0 ) 

(c cn). 
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By a result of the Kuhn-Tucker theory (cf., e.g., [10, Proposition 1.2]), xac is the 
unique element in Wna which minimizes IlTx - Tx, jc2 + alix - Xa,CI12 on Wn"; 
hence 

IIXa,Cn - Xa,C|I < a-1/2fT(hn - jc) II + 1Ihn - X.CII for all hn e Wn. 

But Wn' depends on a and, in general, 0 # Wna = C,. 
If we only know that hn e Cn (C C), then by Theorem 3.4 we obtain the estimate 

1I Xa,C -Xa,Cn I -< a-1211 T(xa,c - hn) jj + IIXa,c - hnIl 

+ a-1/2 g' 111/21, XaC - hnl 12 

which is not optimal with respect to convergence rates: If Qy = Ry and xOc E 

R(PcT*), then Theorem 2.5 implies that IIgjl = 0(a); hence a l/21g alll/2 is 
bounded. Now let 

hn = 
Pcnxa'C5 

where Pc is the metric projector of X onto Cn; then the third term of the estimate 
only converges with the rate C(IIP Xac - Xa CII12), but the best possible rate of 
convergence of elements in Cn to Xa,C is 0(IlPC Xa,C - Xa,Cll). 

In the following we develop two estimates, one for IIXa,Cn - XO,C1l and one for 

IXa ,C - XaC nl, which are both optimal with respect to convergence rates, if C is a 
ball (i.e., C = {x E XIlilx - zjl < r}, z E X, r > 0 and Cn = C n Xn, where X, is 
a finite-dimensional subspace of X. 

In the following, let Xn be a linear subspace of X and Cn C Xn be closed and 
convex. By Pn we denote the orthogonal projector onto Xn. We then define 

(3.*7) C,= { hn e Xn I ((T*T + aI )xa,c T*y,hnXa,Cn) >} 

It follows from (2.6) (with Cn instead of C) that Cn C Cn,. Cn, is closed and convex. 
By Sn" we denote the metric projector of X onto Cn,. Let 

gn := Pn[(T*T? aI)x,,+ c - T*y]; 
then for all x E X, 

{Pnx ~~~~~~~~~if gn = 

(3 .8) S x = p( gn - P,x) ) g a ifga0o 

If g(3 = 0, (3.7) implies that C gn = X, and hence Sn'=P,. Now let gn#0and 

Snn := max(0, Xn ( if g'- ) . 

By a result of the Kuhn-Tucker theory (cf., e.g., [10, Proposition 1.2]), S,ax is defined 
as the unique element in C,"2 such that (S,"'x - x, h,, - S,?x) > 0 for all h,, e C,n'. If 11gna 11 

PIf ge C,, (3.7) implies that CX' = 0.d Since (Pn, = Px) NowleXg,0 and (, ,x 

P,,x ~~ C,~', (3.7)maimpliesnthat 

21go 

By a reult of he Kuh-Tuckertheory cf.,Ieg, [0 rpstin2IInxi eie 
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Since (Px - x) e Xn, (hn - Pnx - X,g') e X, and X% > 0, 

(PnX + 'ngna - xhn- Pnx - Xngn") 

= AVn(go,h -PnX-Ajng j;) +(Pnx-x jhjgj X- (g h ) 

Aa t[( a _ p _ (n S ac-n) lgl2 AaX Vng') x c 

for all hn e C,( (ef. (3.7)); hence SXaX = Pnx + 
;angn. 

LEMMA 3.6. Let X,, Pn and S,a be as above. Let C be defined by C:= {x e 

lix - zil < r}, where z E Xand r > 0, and Cn:= C n Xn. 
(a) Cn = 0 if and only if r >I (I - Pn)zIl. 
(b) Letr >I P(I-P)zll. Then for all x e C, nl(P -S,a)xll n -Pn)z l2/r. 

Proof. (a) Since 

Cn {xn E Xn I lIXn z II < r} = Xn E Xn I lIXn - Pnz I IK r2 -|(I- Pn)z 11, 

we have Cn 0 0 if and only if r2 - 11(I- P0)z 12 > 0, which is equivalent to 
r > jI(I - Pn)zl. 

PnC 
n / 

c n 

P z 

FIGURE 3.1 

(b) If gn = 0, then (3.8) implies that JJ(Pn - Sno)xll = 0 for all x E C; hence it is 
clear that II(Pn - S,)xI = 0 I I(I - Pn)z112/r. Now let gn 0 0; then (2.6) (with C 

replaced by Cn) implies that x cC Ea Cn (3 with respect to Xn), i.e., JIXx,C, - P"Zl 
- r2 - II(I - PZ1)z 2. We see from Figure 3.1 that for all x E C with Pnx 0 C 

||( Pn - Sn,) x | d = r- r -) Z 11 
2 

)1) 

11(,I P n)Z11 _ 
.(n 

- Pn)Z 112. 

r+ (r2- II('-P )Z 1n2)1/2 

If Pn x E CL,a then (3.8) implies that II(Pn -nS,Z)xI = 0 1( - P)zII2/r. El 

Now we estimate IIXa,Cn - xo cll 

THEOREM 3.7. Let Ry = Qy e T(C), xo0c E R(PcT*); let Xn be a linear subspace 
of X and Cn c Xn n C be closed and convex. By Pn we denote the orthogonal projector 
onto Xn and by Sn" the metric projector from X onto C", where Cn, is defined by (3.7). 



574 A. NEUBAUER 

Then 

2|x1 -Xsl a/2lll +(1a/2ll(-)l|( 3JiIXaC - xO',jI K a' 1"2II I ?(I + a II jT(I - Pj I) 11)1(I - Pn)x0,cII 

+ ?a-1/2I IT(Sna - Pj) xoC || + II (Sn - Pj )xo,c 1I 

+max[O, (Pnxo,C,(S, -P)Xo,C) -II(' -Pn )Xo,c |1| 1/2 

where iu is the unique element of minimal norm in U:= {u e R(T)I PcT*u = xo,c}. 

Proof. The existence and uniqueness of iu follows from [9, Lemma 4.1]. Since 
ui E U, we have PcT*ui = x0 c and hence (xOc - T*u, h - xo0c) > 0 for all h e C. 
Together with (3.7), (2.3), Ry = Qy and Cn C C, we obtain 

O (T*Txa,Cn + axa,cn T*Txo,c, Snaxoc - Xac,) 

+a(T*u- XCnX+-XaC 
? Sn,x0, -s:x0,C) 

((T*T + aI)(xac - x0,C) + aT*u, SaXO,C - xa,Cn + XO, -XO,C) 

- oC X,c-Sn 

which implies that 

IIT(xa,Cn - xoc) 112 ? X - XO,c 112 

< (aT**u, X,c - XaCn ) 

+ ((T*T + aI)(x C -xOC) + ?aT*u, SxO,c -XO,C) 

+aT-u x - aX0') + oz(T*u-xo C, o, C SnXOC 

= (T(xa - x-Oc), T(Sn, - I)xOC - a-u) + a(xa(c (S X -I)xo,c) 

< jjT(Xa - XO,c) 11 *T(Sne - I)xxc - aiij ? a(xa, C (S,a-I)Xo,c) 
Together with Lemma 3.3, we obtain 

jj T(X - x0,C) || < IT(Sn - I)xo,c - aU| + ?a/2max[0 (Xa,X (S -I)xoc)]172 

and hence 

allxa,Cn -XOCll < IIT(Sn - I)xOC - a12 + amax[O, (Xa, C(Sn- I)xO c)] 

+ a1/2 IIT(Sn' - I)xo,c - ajIImax[o, (XaCC 
' 

(S- I)xo,C) 1/2 

< (i(Sn' - I)xO,C - aiuII + al/2max[O, (Xa, (s -I)Xc)] ) 
2 

which implies that 

Ixa - xO c|| < a-1/2IIT(Sn' - I)xo,c - aui + max[O, (xo,c, (Sna -I)Xoc)]1/ 

IIXa,c -xO c1l/2 *II(Sn-I) 
x0, / 

Again, Lemma 3.3 implies 

IIX - XOCll1a- 1 /2 T(Sn' I)xO,c-oau 

+ max[O, (xOC (Sn -) xoC) ] 1/2 1/2 

? II(vSa - I)Xo,c 1/2 
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Since (a + b)2 < 2(a2 + b2), (I - = (I - Pn), ((I - P)xO,c P xO,c) = 0, and 

((I - Pn)xo,c, (Sna -Pn)xoc) = 0, this implies that 

2IIxa,C, - x,0c a & '/2jjT(Sn - I)xo,c - a-ii| 

+max[O, (xo,c, (Snu - I)xo,c)]2 + -(Sn I)X0 cC 

< al/211ii + ac1/2j1T(I - Pn) 11 jj(I - Pn)xocit + a-1/211jT(Sn, - Pn)xo,clj 

+ 11(I 
- 

Pn)xo,cII + jj(Sn 
- 

Pn)xo,cII 

+max [O, (Pnx0,c - Pn)xo,c) _ ( I Pn)XO,c112I 1*2. 

Remark 3.8. (a) If Pnxo,c E Cn,, where Cn" is defined by (3.7), then it follows that 
(Sn: - Pn)xoc= 0. Together with Theorem 3.7, we obtain the estimate 

2IIXa,Cn -X C|| < a1/211ii1 + (1 + a-1/211T(I - Pn) jj)jI(I - Pn)xo cit. 

If we choose an such that an 2IIT(I - Pn)II < const and a?n ? 0 for n x , then 
we obtain the convergence rate 0(an/2 + nX(C - Pj)x0,jII), which is optimal (see 
Theorem 2.5) for xo,c E R(PcT *). 

(b) If C and Cn are defined as in Lemma 3.6 and an is chosen such that 
a-1/2 max(IIT(I - PJ)II, I(I - Pn)zll) < const and a -*+ 0 for n -- oo, then we 
obtain the convergence rate 0(al/2 + I1(I - Pn)xo cll + I1(I - Pn)zll), which is again 
optimal. 

If we know that llxa,c - x0,C11 = 0(a), then the estimate of Theorem 3.7 can 
never be optimal with respect to a. Therefore, we develop an estimate for Jjxa,c - 

x, ,c 1, which is optimal with respect to a even in the case Jjxa c - x0,cjj = 0(a). 

THEOREM 3.9. Let Ry = Qy E T(C) and Cn, Pn, Sn" as in Theorem 3.7. For a > 0 
let g. be defined by ga: T*Tx a c + Tx c-T*y. Then 

xIxa,c - Xa,C II 
- 

a1/211(I - Pj) T*I|(I - Pn )xo,c 11 +IIxa,c - xo,cII) 

+?ax / ||jT( Sn -Pn ) Xa,c 11 + 11 (Sn -Pn) Xaci 11 

+a-1rI(I - Pn)T*T(xac - XoC) I1 

+ a - 1/ 11 go, 1 1/2 O1/2. + a(X211 ga 1211( Sn - Pn) Xac 11 

Proof. It follows from (3.7), (2.3), Ry = Qy, (2.6), and Cn C C that 

o (T*T(XaC -x0c) + axc, Sxc - xa,c) 

? ( T *T(xa, c - x ?0,c) + ax,ac, Xa,Cn - Xa,C) 

- (T*T(xu,c -X Xa,) + a(xa,c - Xa,Cn)Xa,C 
- 

Xa,C) 

+(T*T(xac, xoc)+ax_a,C'S,~x_a,C-x_a,C) 



576 A. NEUBAUER 

which together with (P, - I)xa,c = 0 implies that 

IT(Xa,c - Xa,Cn) ll + all Xa,c - Xa,CI 11 

K (T*T(Xa ,C - Xo,C) + aXa,C" S,'SnXa,C - Xa,C) 

-(T*Txa c + axac- T*y, (S - I)Xa.C) 

+((T*T+ aI)(xa,c -xa,C), (Sna - I)Xa,C) 

= 
(go (Sn, - Pn)Xa,C) -(T*T(XaC - xas) (S: -I)Xa,C) 

+ ((Pn- I)T*T(Xa,C-) 

- ((Pn - I) T *T(x,c - X0,C) Xa,cn) 

+a((xatc,(Pn - I)Xa,C) + a(Xa,cn - Xa C, (Sn - Pn)Xa C) 

+a((Pn - )(xa -Xa,C), Xa,c) 

= (T(Xa - Xa,C), T(Sn - I)xac) + (ga (Sn - Pn)x,C) 

+ (Xa,C - Xa,Cn (Pn - I)T*T(Xa,c - xoc) a(Sna- Pn)Xa C) 

lT(Xa,Cn - Xa,C) 11 jT(Sna - I)X.,C l + llgall J(Sn, - Pn)Xa XCl 

+ llXa,c - xa,CnII(ll(Pn - I)T*T(Xa,c - XOC) + all(Sn' - Pn)Xa,ClI). 

Together with Lemma 3.3, we obtain 

llT(xa,c - Xa,Cn) || < I|T(SnF - I)Xac,,c 

+ [l ga 11 jj (Sn, - P )Xa,C 11 + 11 Xa,C Xa,Cn 11 

(Pn - I)T*T(xa,C -X0,) || + all(Sn -Pn)Xa,Cll) 
1/2 

and hence (using the fact that for a, b > 0, a2 + ab + b2 < (a + b)2), 

all Xa,C - Xa,Cn 
2 

IIT(Sna - I)x.,cll 

+ [11 ta 1111(Sn - Pn)Xa,ClI+ ||Xa,C XaCn 11 

(II(Pl -I)T*T(xa,c-xo,c) I +all(S - Pn)xac,cll)] )2 

which implies that (note that Va + b < C + /b for a, b > 0) 

llXa,C - Xa,Cn 1l 

< a-1/2llT(S -I)X CII+ a-1/211g lll/211(sa - P)X 1/2/2 

+ lXa,C - Xa,C n11 /(a-111(Pn - I)T*T(xa,c - XO,c) 11 + Il(s: - Pn)xa,cII) 
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Again, Lemma 3.3 implies 

Xa,C -XaC 11/2 

< (a /2T(S,' - I)xaCII + a a _ Pn)XaCi 1/2)1/2 

+ (c1Il(Pn - I)T*T(Xa,C - X0,c) | + II(sn - Pn)XaC II) 

Since (a + b)2 < 2(a2 + b2) and (I - n)2 = (I Pn), this implies that 

IX,C - XCaCII < a-1/2 T(Sn, - I)Xa,CI + |(s,u-Pn)Xa,C| 

+a-'I(Pn - I)T*T(XaC - X0,C) 1 

12 
11 ga 11 112 Sn1 +a- 

u 

~~Pn)Xa,'C 1 
/ 

< a1/ Il(I - Pn)T* T (I-(Pn)xoc- + IXa, X-0x,CI) 

+a-1/2 11T(Snu -Pn) x C| |'u-nX l -P)a,C~ +I11(Sn Pn) Xu,CI 

+ a-'1I (I - Pn) T *T(Xa,C - X,C)1 

+a1/2 11 g 11 1/2 Sn(S _ p Xcl *? + a 
- n~~~ X u C 1 1/2. 

If C and Cn are as in Lemma 3.3, we obtain the following corollary. 

COROLLARY 3.10. Let C be defined by C:= {x E XI lix - zIl < r}, where z E X 
and r > 0. For a sequence { Xn } of finite-dimensional linear subspaces of X, such that 
X1 C X2 c * and U ne N Xn = X, let Cn:= C n Xn. Let T E L(X, Y) be compact 

and y E Y such that Ry = Qy E T(C). For all n E N, let r > I (I - Pn) zII where Pn 
denotes the orthogonalprojector onto Xn. 

(a) If xo,c E R(PcT*) and an:= c max{II(I - P)x0,CII, ( (-Pn)zI12, 

11(I - PJ)T*II2}, c > 0, then 

lIXan,Cn - xo,c = 0(max(II(I - Pn)xo,cI ( - Pn)z II -(Pn)T 

(b) If xo,c E R(PcT*), X0,C T*iu and Pxo0c E R(PT*TP), where P is the 
orthogonal projector onto L:= {h E XI(xoc - T*iu, h) = 0), and an:= c* 

max{II(I - Pn)xo,cl, 11(I - Pn)zIl, 11(I - Pn)T*II21, c > 0, then 

IIXan,Cn - C 1 

= o(max(II(I - Pn))xo,c (I i -' Pn)- zz, 11(I - Pn)T* |12, 1(l(I-Pn)T*TIJ)). 

Proof. Lemma 3.6 implies that Cn # 0 for all n E N and II(Sn - Pn)xacll < 

I1(I - Pn)zII 2/r for all a > 0. Therefore, by Theorem 3.9, we obtain the estimate 

|II Xan,Cn -X C 

< IXa,C - X,C 

(3.9) +aa-1/2II(I - Pn)T* I(I - Pn) xoxcII + IIxan,c - xoci) 

+a-112r-IITI 11 (I - Pn)z 11 (I - Pn)z 11 + r1 I(I - Pn)z I 

+ a-1 (I - Pn) T *T(Xan,C -x/2a-1/211 g 
1 -)/2Z 
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The compactness of T guarantees (cf. [4, Lemma 4.21]) that 11(I - PJ)T * 0 O and 
1(I1- P,)T*TII 0 for n -x 00. 

Since xo,c E R(PcT*), Theorem 2.5 implies that IIT(xa,c - xO,c)II = O(a), hence 
by definition of ga (cf. Theorem 3.9) IIgaII = O(a). This implies that a-l/21ga 11 1/2 

is bounded. The choice of an in (a) and (b), respectively, implies that 

a-1/2II(I _ P)T*I11 and a 1/2II(I -Pn)ZI11 

are bounded. Therefore, (3.9) implies that 

Il Xan,Cn 
- 

l O(max( il x-n,c o X I (I Pn) XOX ll 1I ( ' Pn) Z 

+( 3.0 (I-Pn)T*T(XaC-XO,C) 1) 

(a) Theorem 3.2 implies that 

IIXa,C - xO,C 11 = (al/2) 

and that aQ'IIT(xa ,c - x, c)JI is bounded. Therefore, we obtain with (3.10) 

IIXan,Cn- xo,cII = O(l7aX(II - Pn)xo,c (I - Pn)z 1, Il(I -Pn)T 

(b) Since ac = {x E XI IIX _ z112 = r2} F(x):= IX -_z112 is twice continuously 
Frechet-differentiable and F"(x) is positive definite for all x E X (note that 
F"(x)(z, z) = 211z112), Theorem 2.6 implies that IIXan,C - XO,CjI = O(an) and 
a- xIxa c-xOcll is bounded. Therefore, we obtain from (3.10) 

IIXan,Cn -OXII 

= O(max((I - Pn)(xo,c (I - Pn)z|, |(I - Pn)T*12, ,(II- Pn)T*Tl)). : 

Corollary 3.10 shows that it is possible to obtain optimal convergence rates if C is a 
ball and if Cn = C n Xn, where Xn is a linear subspace of X. If we know only that 
Ry = Qy, x0 c E R(PcT*), Cn C C for all n E N, and PCXOC 

-> xo,c for n -x 

where PC denotes the metric projector from X onto Cn, then we can only guarantee 
the square root of the best-possible rate of convergence of elements of Cn to the 
C-best approximate solution of (2.1), i.e., O(II(PCn - I)xocI1112): Since Cn Cna, 
I(S - I)xO,C0I < II(Pcn - I)xo,cll. Now Theorem 3.7 implies that 

2||IXan,C -o Cj || j|| Uii ja1/2 + a- 1/2| IT(Sna -I)xO cII + II(Sn' -I)xO cII 

+ max[0, (xO c, (Sn - I)Xo c)] 

< 1iiIIa'/2 + - I)XO,CI12 

[IT 1 12 n ( PCn 
- 1)XOCll + II(PC -I)XO Clll + II XOC II '1 

If we choose an such that an II(PC - I)xo,cll, then this estimate implies that 

IIXan nCn- X,c1 = o( 11(PCn 
- 

I)X c1/2) 

If we do not know the data y exactly, but elements y8 E Y such that IIQ(y - Ys)ll 
< 8, then we can obtain results about convergence rates in dependence on 8 
analogously to Theorem 2.7, using Theorem 2.4 and the fact that llxa - x0 < 

IIXaC, - xO,cII + II.cn - XaaCnC XC 
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4. Numerical Results. All results of this chapter were obtained with FORTRAN 
programs on an IBM 3031. We compute the constrained Tikhonov-regularized 
solutions xa,,C of linear Fredholm integral equations of the first kind, 

1 k(t, s )x(s) ds = y(t), t E [0, 1] , 

where y E L2[0, 1] and x E C (c L2[0,1]). C is either the set of nonnegative 
functions, i.e., C = {x E L2[0,1]Ix > 0 a.e.}, or C is a ball, i.e., C = {x E 

L2[0, 1]1 IX- zll < r}, z E L2[0, 1], r > 0. We approximate X:= L2[0, 1] by the 
sequence of linear subspaces Xn, where Xn is the space of linear splines on a uniform 
grid of (n + 1) points in [0,1]. It is easy to see that X1 C X2 C X4 C X8 C ... C 

X2k C - * * . C is approximated by Cn:= C n Xn. For the set of nonnegative func- 
tions we used the Lemke method to obtain xa c and for balls we used the Wilson 
method. For details on these methods see [1] and [3], respectively. 

We use the following notations: en := IIXan,C.-x0,cjI and en := l - x0,cX, 

where x nc is the constrained Tikhonov-regularized solution of the integral equa- 
tion with y replaced byy8 (IIQv-Y)II< An)' 

An - % A= Sn 100 

IIyII 
Example 4.1. Here the kernel is always given by 

(2(s - t) + 6(s - + 4(s-t)3 if s - t 

2(s - t) - 6(s - t)2 + 4(s - t)3 if s > t. 

One can show that T* = -T, N(T) = N(T*) = [1] and 

R(T) = R(T*) = {x e H3[0, 1] 1f y(s) ds = 0 

and y(k)(0) y(k)(1) for k = 0,1, 2. 

It follows from [5] that 11(I - P")T*ll = O(n-2). 

(a) C:= {x e XIx > 0 a.e.}, 

(131 29 11-2 5 3 t4- 128 6 if 0 
- 22 _8t + 9t2 - -t3 if 4 t t < - 6720 80 20 2 5 4 

_ 223 81 49 3 3 if- 
3360 

-0 20+~~ 21 1 

8951 _ 621 319 t2 - 27 3 t4 3 < t 20 ~t -t+ 4 if-<s1 
6720 80 20 2 4 

and I IYII- 0.0415. The exact solution is 

1 + 4s - 128s3 if4 0 s< 4, 

X0oC(S):= 4 f4 4544 

t-3+4s if 3 <s1, 

and x0c E R(PcT*). 
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It follows from [5] that, even though xo0c t H2[0,1], one has 11(I - Pc=)xO cI= 
O(n2) for n = 2k, k E N. This follows from the fact that xo'e - H2(Jj), 
j = 1, 2,3, with I,:= [0, -], I2:= [4, 31, and 13: [3,1]. 

Now Theorems 3.7 and 2.4 imply that for a? = cl* n-2, 8n = C2 n-2, C, C2 > 0 

we should obtain the convergence rates e = 0(n-1), en = O(n-1). 

n an en en n * 10 

4 6.3 *10-6 1.9 * 10-1 7.7 
8 1.6 * 10-6 4.9 *10-2 4.0 

16 3.9*10-7 1.0*10-2 1.6 
32 9.8 * 10-8 3.9 *10-3 1.3 
64 2.4*10-8 2.6*10-3 1.6 

n n - % e enn n *10 
4 6.3 *10-2 1.9 * 10-1 7.7 
8 1.6 * 10-2 4.9 *10-2 4.0 

16 3.9 * 10-3 1.0* 10-2 1.7 
32 9.8 * 10-4 3.9 *10-3 1.3 
64 2.4*10-4 2.6*10-3 1.7 

an =104 * an - % 

The last column of each table shows that the rate obtained confirms the theoretical 
result. 

(b) C:= {x E XI llx - zll < r}, where 

z(t):= 7t3-t, r2:= 3-0556 3.15, 
100546875 

and c := 11 z 112 - r2 = 138756944 1.38, 

y(t= (6 -) + 9( 38 t ) + 5_(l- X)t2 + 82 A - 5)t3 
6 38 1/ -(10 +(5 

+( - 1)t4 -7 t5 + 7t6 - 2 t7 5 5t 5 

where X = 7 264835 0.84, and y11 0.0243. 

The exact solution is 

XOc(S) = ( - +(X - 1)s - 7XS2 + 7S3 
~30 4j 2 2 

and 

Xoc E R(PcT*). 

It follows from [5] that 11(I - Pn)xO cII = O(n-2), II(I - Pn)zII = O(n-2), and hence 
Corollary 3.10 and Theorem 2.4 imply that for a,n = C1 - n-, 4 

n = C2 - n-4, cl, 

> 0 we should obtain the convergence rates = -2 8 
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n ah en e n * 2 *10 n e~~.n2n1n 

4 3.9*10-3 2.4*10-2 3.9 
8 2.4*10-4 4.4*10-3 2.8 

16 1.5 *10-5 9.8 * 10-4 2.5 
32 9.5 *10-7 2.2 *10-4 2.2 
64 6.0*10-8 5.0*10-5 2.0 

n en2 n 10 

4 3.9*10+1 6.2*10-2 10.0 
8 2.4*10+0 6.4*10-3 4.1 

1 6 1.5 * 10 -' 1.3 * 10-3 3.3 
32 9.5 *10-3 3.5 *10-4 3.6 
64 6.0*10-4 8.3*10-5 3.4 

n= 10- *an % 

The last column of each table shows that the rate obtained confirms the theoretical 
result. 

Example 4.2. Here the kernel is always given by 

(s(I - t) if s < t, 

One can show that T* = T, T is injective, and R(T) = { y E H2[0, 1] y(O) =y(l) 
= 0). It follows from [5] that 11(I - P")T*ll = O(n-2). 

(a) C:= {x E XIx > 0 a.e.), 
(5 8 3 + 16 4 if 0 3 

y(t)= 
T 6 9 274 
3 

- t) if 
3 

t 1, 

and IlYll 0.0579. The exact solution is 

x0 c() = 9 (4 5) if 0 3 <4 x0,C(S):=3 

0 ifif < s< 1, 4 

and x0,c E R(PcT*), but x0 = xo,c t R(T*). 
It follows from [5], analogously to Example 4.1(a), that 11(I - Pcn)x0cII = 0(n2) 

for n = 2k, k E N. Now Theorems 3.7 and 2.4 imply that for a = c n 2, 

An-C2 - n-2, C1, C2 > 0, we should obtain the convergence rates en =O(n-1), 

e "= O(n'). 
The unconstrained Tikhonov-regularized solutions x' (= (Tn*Tn + aI)-lTn*y; 

Tn:= TPn) do not converge as fast as the constrained Tikhonov-regularized xa,Cn. 

(The necessary condition "xo E R(T*)" for the convergence rate o(a'72) in the 
unconstrained case (cf. [4]) is not fulfilled). We denote e := IIxan - x0j1, 

en ||Xann - an XOC- 
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n ?Kn en en e n n n2 *l0o 

4 6.3 * 10-5 6.0 *10-3 2.3 *10-4 3.6 
8 1.6 * 10- 5.3 *10-3 5.6 *10-5 3.6 

16 3.9*10-6 4.5*10-3 1.4*10-5 3.5 
32 9.8 *10-7 3.8 *10-3 3.5 *10-6 3.5 
64 2.4 *10-7 3.2 *10-3 8.6 *10-7 3.5 

n an On en en n * 10 

4 6.3 *10-5 4.7* 10-2 4.6 *10-2 1.8 
8 1.6 *10-5 2.5 *10-2 1.9* 10-2 1.5 

16 3.9 *10-6 1.5 *10-2 9.2 *10-3 1.5 
32 9.8 * 10-7 8.9 * 10-3 4.5 * 10-3 1.4 
64 2.4 *10-7 5.3 * 10-3 2.2 * 10-3 1.4 

an = 10- * n - % 

The last column of each table shows that the rate obtained confirms the theoretical 
result. 

(b) C:= {x E XI lix - zll < r}, where 

z(t):= 
1 

(145 - 288t - 4t3 + 2t4) r2 = 3, 

and c:= 00Z4I - r2 = 30407 = O.K 725760 

y(t):= 1 I40(llt - 15t2 + 6t5 - 2t6) and Y 0.00097. 

The exact solution is 

x0,c(s):= 
I 

(1 - 4s3 + 2s4), 

and Pxo,c = PT *TP1, where P is the orthogonal projector onto 

L:= {h E XI(xoc-T*i,h) = 0} = {h E XI(z - xo,c,h)= }, 

but xo = xoc Z R(T*). It follows from [5] that 11(I - Pn)xcll = 0(n-2), 
11(I - Pn)zII = O(n-2), and hence Corollary 3.10 and Theorem 2.4 imply that for 
?ln-C1 * n-2 a = C2 * n-3 cl, c2 > 0, we should obtain the convergence rates 

e= O(n-2), e = O(n 2). We see from the tables that the unconstrained n n~~~~~~~~~~~ 
Tikhonov-regularized solutions xa and X 

n'n do not converge as fast as the 
constrained Tikhonov-regularized solutions xa c and x C respectively. (As in (a), 
the necessary condition "xo E R(T*)" for the convergence rate o(al/2) in the 
unconstrained case is not fulfilled.) 
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n | an- en enA e nA n -10 nnnen nK 

4 6.3 * 10- 5.0* 10-2 4.8 * 10-2 1.9 
8 1.6 * 10-1 2.5 * 10-2 1.8 * 10-2 1.6 

16 3.9 * 10-2 1.4 * 10-2 8.6 * 10-3 1.4 
32 9.8*10-3 9.4*10-3 5.0*10-3 1.6 
64 2.4* 10-3 5.3 * 10-3 2.2* 10-3 1.4 

n - es es *n2 *103 

4 1.6 * 101 6.0 * 10-3 2.3 * 10-4 3.7 
8 2.0 * 10-2 5.3 * 10-3 5.6 * 10-5 3.6 

16 2.4 * 10-3 4.5 *10-3 1.4 * 10-5 3.6 
32 3.1 * 10-4 3.8 * 10-3 3.5 * 10-6 3.6 
64 3.8 * 10-5 3.2 * 10-3 8.7* 10-7 3.6 

an= n 10Q4 * an - % 

The last column of each table shows that the rate obtained confirms the theoretical 
result. From the third column we see that the rates for e and en are very slow. For 
more examples see [10]. 
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